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the Rigid Chains of an Aromatic 
Polyamide in Solution* 
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(Received3 November 1997; In final form 5 June 1998) 

Theories of flow birefringence and intrinsic viscosity, as developed for wormlike chains 
in the non-Gaussian range of the molecule length, have been analyzed. As a result, a new 
presentation is suggested for dynamo-optical data in a form, suitable for the determina- 
tion of the conformational and optical parameters of the macromolecules: Kuhn's ran- 
dom link A ,  segment diameter d, and optical anisotropy j3 per unit length of the chain. A 
model developed for wormlike cylinders with rounded caps was applied to the data 
obtained for the rigid-chain polybenzimidazolterephthalamide. 

Keywords: Wormlike cylinders; Persistence length; Random link; Contour length; 
Optical anisotropy; Flory's viscosity coefficient 

INTRODUCTION 

The investigation of the Maxwell effect (flow birefringence) in polymer 
solutions is a well-known method for the determination of conforma- 
tional and optical parameters of the macromolecule."321 Each macro- 
molecule can be characterized by a contour length L(= M/ML, where 
M is molar mass and ML is the molar mass per unit contour length of 
the molecule), by a number N of random links (with N =  L / A  = L/2q, 

* In memory of Gerhard Moller 
t Corresponding author. 
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22 P. MOLLER AND V. MOLLER 

where q is the persistence length and A is the length of the random 
link), and by a hard-core diameter d. The dynamo-optical constant [n] 
is defined by [n] = lim(An/gcq~)g+o,c+o where An is the birefringence 
induced in the polymer solution by shear flow, g is the shear rate, c is 
the solute concentration and qo is the solvent viscosity. 

A number of authors, including Tsvetko~,[~’~I Gotlib and S~e t lov [~’~]  
and Shimada and Yamakawa,”] related birefringence An to the optical 
anisotropy and the degree of coiling of the macromoecule L/A. Intra- 
molecular hydrodynamic interaction and thermodynamic quality of 
the solvent (excluded volume) both affect the value of [n], whereas the 
ratio of [n] to the intrinsic viscosity [q] (known as the stress optical 
coefficient) is insensitive to the excluded volume effects. Therefore, this 
ratio [n] / [q]  is more often used for a theoretical interpretation of the 
experimental flow birefringence (FB) data than [n] itself.[81 Within the 
low molar mass range, where L/A + 0 (rodlike chain approximation), 
the dependence of [n] / [q]  on L/A is determined by the optical aniso- 
tropy P of the unit length of the chain, whereas in the high molar mass 
range, with L/A -+ 00 (Gaussian coil approximation) this dependence 
is determined by the optical anisotropy of the random link PA. Hence, 
if the experimental FB data are available over a sufficiently wide range 
of molar masses, one can evaluate both, the value of P (from the initial 
slope of [n]/[q], as plotted against L/A) and the length A of the random 
link (from the ratio of the limiting value of ([n]/[q])m, and the said 
initial slope). 

This evaluation becomes more critical, if the FB data are available 
only in a narrow range of L/A values in the middle between the men- 
tioned two limits of L/A, in the range of non-Gaussian chains.[3341 In 
this range the treatment must be based on a direct comparison of the 
experimental data points with the theoretically predicted dependence 
of [n]/[q] on M. The reliability of the conclusions depends here on the 
adequacy of the chosen model as well as on the width of the range of 
molecular masses available and, also, on the accuracy of the determi- 
nation of the molar masses. The situation is particularly intricate, if a 
reliable molar mass determination is difficult. 

Recently Garmon~va~’] compared experimental dynamo-optical 
and viscometric data with the predictions of the wormlike chain 
model. In the present study this method is replaced by a more accurate 
one. According to this latter method, the conformational and the 
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FLOW BIREFRINGENCE OF RIGID CHAINS 23 

optical parameters are obtained from the coordinates of the maximum 
of a spline approximation curve, which is drawn through the points 
representing the combination of experimental data ([n]/[7j])/[q]”2 as 
plotted against log [q]. This spline approximation curve is compared 
with tabulated theoretical values of FB and intrinsic viscosity, as 
obtained for the model of a wormlike cylinder with rounded caps. This 
method is applicable only to a polymer-solvent system, in which form- 

are absent. It goes without saying that it is also assumed that 
the applied theories have to fit the FB and intrinsic viscosity data with 
the same values of the conformational parameters. 

METHOD 

The polymer molecule is characterized by the same values of A ,  d, and 
ML for the description of the FB and viscosity phenomena. An explicit 
use of contour length L can be avoided by linking [n]/[q] to [q] through 
the parameters d, A ,  p and ML. This can be accomplished by assuming 
that the dependence of the dynamo-optical properties on M can well be 
approximated for the kinetically rigid wormlike chains by Equation (1) 
over the whole range of changing conformational properties (from the 
straight rod to the Gaussian 

where ([n]/[7j])m is the value of ([n]/[q]) in the Gaussian coil limit, 
L/A 3 M. This value is determined by the optical anisotropy of the 
random link 4A:[’01 

( b I / [ ~ L  = BPA. (2) 

Here B is an optical coefficient, B = ( 4 ~ / 4 5 k T ) ( n i  + 2)2/no, with no 
being the refractive index of the solvent, k the Boltzmann constant and 
T the absolute temperature. 

We now use Flory’s well-known equation for the intrinsic viscosity 
which is valid for molecules in unperturbed state: 

[Q] = 9(LA)3’2 /M,  (3) 
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24 P. MOLLER AND V. MOLLER 

where @ is Flory’s coefficient. For practical reasons this equation is 
rearranged as follows: 

[ q ] / A 2  = @ ( L / M ) ( L / A ) 1 / 2 .  (3a) 

In combining Equations ( l ) ,  (2) and (3a), one arrives at 

where MIL is replaced by M L  and the following notations are 
accepted: 

Taking the logarithm of Equation (3a) one obtains: 

log[q] + Const; = Q*, (7) 

Const; = - log(A2/ML), (8) 

with the following notation: 

Q* = ~ o ~ [ Q , ( L / A ) ” ~ ] .  (9) 

Parameters P; and Q* are connected with LIA and @ by Equations (6) 
and (9). In the general case of non-Gaussian chain molecules the value 
of Flory’s coefficient Q, depends on the contour length and the 
diameter of the polymer chain, which are of influence on the draining 
effect. Therefore the parameters P; and Q* also depend on L / A  and 
d/A and can be tabulated, if Flory’s function @(L/A,  d /A)  is known. 

Parameter P;, however, is related by a constant multiplier to the 
experimental value of the stress optical coefficient [n] / [q]  through 
Equation (4). In turn, parameter Q* is related to log [q] by Equation (7). 
This fact enables us to perform a joint treatment of the dynamo- 
optical and the viscometric data and compare them with the theoreti- 
cal results. The experimental dependence of ( [n] / [q] ) / [qJ1’2  on log [q] 
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FLOW BIREFRINGENCE OF RIGID CHAINS 25 

can be brought into coincidence with the model function p*,(p) by the 
choice of suitable values of Const; and Const;. In the next step, 
the values of p and A can be obtained from Const; and Const; with 
the aid of Equations ( 5 )  and (8). 

RESULTS AND DISCUSSION 

As a model developed by Yamakawa and Yoshizaki," 'I a wormlike 
cylinder was used with its ends being covered by hemispheres. The axis 
of this flexible cylinder coincides with a thread characterized by a 
certain persistence length q. The values of Flory's function @ were 
evaluated using Equations (25)-(33) given in the cited work. They 
are presented in Figure 1 for different reduced lengths and diameters 
(L /A  and d/A)  of our special wormlike cylinders. They differ from 
those calculated by Yamakawa and Fujii"21 for ordinary wormlike 
cylinders (without caps) only in the range of low values of L/A.  

L /A 

FIGURE 1 versus reduced chain len th 
as predicted by the theories for the wormlike cylinder model with rounded caps!"l 
Numbers at the curves indicate the d/A values. 

Semilogarithmic plot of Flory's coefficient 
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26 P. MOLLER AND V. MOLLER 

TABLE I Abscissa Qmax and ordinate PT,,,, of the maximum of PT as a function of 
Q and the corresponding values, as calculated for wormlike model chains with 
different d/A values by Equations (6), (9) and (10) according to the theory given by 
Yamakawa and Yoshizaki[”] and Ts~etkov[~’~I 

0.001 
0.002 
0.005 
0.010 
0.015 
0.020 
0.025 
0.030 
0.035 
0.040 
0.045 
0.050 
0.060 
0.070 
0.080 
0.090 
0.100 
0.1 10 
0.120 
0.130 
0.140 
0.150 
0.160 
0.170 
0.180 
0.200 
0.300 

64.31 
58.60 
49.03 
42.98 
39.39 
36.84 
34.87 
33.27 
31.93 
30.78 
29.77 
28.87 
27.33 
26.06 
24.97 
24.02 
23.18 
22.43 
21.75 
21.14 
20.57 
20.05 
19.57 
19.12 
18.71 
17.95 
15.16 

0.780 
0.994 
1.340 
1.609 
1.778 
1.904 
2.005 
2.088 
2.161 
2.225 
2.282 
2.333 
2.421 
2.497 
2.564 
2.622 
2.675 
2.723 
2.766 
2.806 
2.844 
2.878 
2.91 1 
2.942 
2.970 
3.025 
3.241 

0.187 
0.226 
0.297 
0.378 
0.439 
0.492 
0.540 
0.583 
0.625 
0.663 
0.700 
0.734 
0.798 
0.858 
0.9 15 
0.966 
1.017 
1.064 
1.107 
1.149 
1.191 
1.227 
I .264 
1.301 
1.335 
1.404 
1.722 

Insertion of our values of @ into Equations (6) and (9) furnishes the 
model parameters PT and Q* for different values of L / A  and d / A  
(Table I). From the experimental units usually used, these calculations 
were made in terms of 

pT = 1ol3p;, 
Q = Q* - 20. 

Accordingly, 

Const1 = 10’~~ons t ; ,  
Constz = Const; - 20. 
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FLOW BIREFRINGENCE OF RIGID CHAINS 21 

0.0s 0.10 \ 
I I I I 

2 6 

Q 
FIGURE 2 Model function PT plotted against Q according to Equations (6). (9), 
and (10) for the worlike cylinder model with rounded caps for different reduced chain 
diameters d/A.  

Figure 2 illustrates some principal results. One learns that PT is a 
unimodal function of Q with a maximum predicted to occur in the 
range of reduced lengths of 0.3 < L / A  < 1.4 for chains possessing equal 
diameters in the range 0.005 < d/A < 0.2. 

Figure 2 also shows that, with decreasing d/A,  the maximum of 
PT(Q) function increases in height and shifts to lower values of Q 
(lower L/A),  this shift becomes more pronounced with further decreas- 
ing d /A  (Figure 3) .  Hence, lower values of d /A  can be determined with 
higher accuracy. The coordinates of the maximum, Qmax and Pmax, as 
calculated for chains of different lengths and diameters, are collected 
in Table I. 

From Figure 2 we also learn that, with decreasing d/A the curve 
PT(Q) becomes wider. This results in a reduction of the accuracy in the 
determination of the location em,, of the maximum. For practical 
purposes, the location of the maximum of the wider experimental 
curve might be more reliably presented by the abscissa Qav of the 
“median” point located at equal distances from the left and right 
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28 P. MOLLER AND V. MOLLER 

I I 1 I 
0.1 0.3 

dlA  

FIGURE 3 
increasing d/A.  

Change in the abscissa of the maximum of the &(Q) function with 

branches of the PT@) at a chosen level of PT. Clearly, the abscissa of 
this median point approaches Qmax with PT + P T , ~ ~ ~ .  For this reason 
Qav is used below instead of Qmax. The relative width AQ/Qav of the 
PT(Q) curve, as obtained at different levels of PT (5, 10,20 and 30% of 
PT,max), was calculated analytically. These values of AQ/Qav are col- 
lected in Table 11. The pertinent values of QZ, are given in Table 111. 

The data of these tables clearly show that the width of the PT(Q) 
curve, as found close to the position of the maximum, is sensitive to a 
reduced diameter of the chain d/A. As a consequence, the relative 
width of the experimental dependence of ([r~]/[q])/[q]”~ on log [q], as 
measured close to the maximum, might be used for an estimate of d/A.  
In turn, the value of Qmax depends on A2/ML (by Equation (8)), 
whereas PT,max is related to ,f3ML’2 (by Equation (5)). Therefore, emax 
and P T , ~ ~ ~  might be used for the determination of A and p 

The question may arise how the results obtained in this way depend 
on the approximation used in Equation (1). To answer this question, 
the function P(Q) was calculated for a wormlike chain with a reduced 
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FLOW BIREFRINGENCE OF RIGID CHAINS 29 

TABLE I1 Relative width AQ/Qav of the PT(Q)  curve at the level P T / P T , ~ ~ ~ ,  as 
calculated for wormlike model chains with different d /A  values by Equations (6), (9) 
and (10) according to results of Yamakawa and Yoshizaki"'] and T~vetkod~. '~ 

0.95 0.90 0.80 0.70 

0.005 
0.006 
0.007 
0.008 
0.009 
0.010 
0.012 
0.015 
0.020 
0.030 
0.040 
0.050 
0.060 
0.070 
0.080 
0.090 
0.100 
0.120 
0.150 
0.200 

1.6573 
1.6137 
1.5756 
0.6126 
0.5813 
0.5549 
0.5121 
0.4641 
0.4084 
0.3399 
0.2971 
0.2667 
0.2437 
0.2254 
0.2105 
0.1980 
0.1874 
0.1709 
0.1544 
0.1317 

1.7176 
1.6695 
1.6276 
0.8686 
0.8237 
0.7858 
0.7241 
0.6553 
0.5758 
0.4786 
0.4186 
0.3766 
0.3452 
0.3207 
0.3013 
0.2838 
0.2696 
0.2474 
0.2230 
0.1931 

1.8387 
1.7810 
1.7314 
1.2326 
1.1674 
1.1123 
1.0235 
0.9249 
0.8125 
0.6799 
0.5974 
0.5397 
0.4965 
0.4627 
0.4353 
0.4125 
0.3932 
0.3606 
0.3260 
0.2857 

1.9598 
1.8919 
I .8344 
1.5146 
1.4340 
1.3660 
1.2569 
1.1365 
0.9993 
0.8349 
0.7353 
0.6664 
0.6151 
0.5750 
0.5424 
0.5152 
0.4918 
0.4538 
0.4123 
0.3644 

TABLE 111 Average abscissa Qav of the PT(Q) curve at the level of P T / P T . ~ = ~ ,  as 
calculated for wormlike model chains with different d / A  values by Equations (3), (6) 
and (9) according to results of Yamakawa and Yoshizaki!"] and T ~ v e t k o v ~ ~ ~ ~ ~  

dlA pT/pT,max 

0.95 0.90 0.80 0.70 

0.008 
0.009 
0.010 
0.012 
0.015 
0.020 
0.030 
0.040 
0.050 
0.060 
0.070 
0.080 
0.090 
0.100 
0.120 
0.150 
0.200 

1.5216 
1.5692 
1.6125 
1.6889 
1.7844 
1.9110 
2.0959 
2.2312 
2.3382 
2.4272 
2.5032 
2.5696 
2.6288 
2.6822 
2.7760 
2.8949 
3.0427 

1.5232 
1.5718 
1.6159 
1.6930 
1.7896 
1.9170 
2.1026 
2.2386 
2.3464 
2.4363 
2.5139 
2.5826 
2.6418 
2.6963 
2.7928 
2.9124 
3.0644 

1.5270 
1.5773 
1.6228 
1.7024 
1.8016 
1.9330 
2.1286 
2.2682 
2.3784 
2.4698 
2.5484 
2.6174 
2.6790 
2.7345 
2.8292 
2.9496 
3.1047 

1.5446 
1.5972 
1.6445 
1.7272 
1.8300 
1.9650 
2.1598 
2.3014 
2.4135 
2.5065 
2.5862 
2.6558 
2.7174 
2.7726 
2.8684 
2.9884 
3.1439 
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30 P. MOLLER AND V. MOLLER 

diameter d / A  = 0.05 in two ways: the function PT(Q) was calculated 
using the approximation of Equation (1) and the function Ps(Q) was 
calculated according to the FB theory, as developed by Gotlib and 
S~e t lov~”~]  for the dependence of the stress optical coefficient on the 
molar mass M. As is well-known, this coefficient is often used in the 
treatment of FB The mentioned functions are compared in 
Figure 4. It can easily be seen that for a chain with a reduced length in 
the range 1 < L / A  5 100, Ps(Q) and PT(Q) differ by no more than 5%. 
This difference is close to the experimental error. We may conclude, 
therefore, that the application of the two different FB theories to the 
experimental FB data leads to variations in the conformational and 
optical parameters, which do not exceed the uncertainties of the 
experimental determination. 

L IA 

Q 
FIGURE 4 Ps and PT plotted against Q (curves 1 and 2, respectively) for the worm- 
like cylinder model with rounded caps for d/A = 0.05, and calculated with the assump- 
tion of different molar mass dependences of [n]/ [v]  by (1) Gotlib-Svetlov[61 and 
(2) T s ~ e t k o v . [ ~ * ~ ~  
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RESULTS AND DISCUSSION 

Experimental FB data, as obtained by Lavrenko et al. for solutions 
of polybenzimidazolterephthalamide in sulfuric acid are presented in 
Figure 5 as data points for [n]/fq] (points 1) and for ([n]/[q])/[q]1’2 
(points 2) in a plot against log[q]. Solid curve 2 is the spline-approx- 
imation of the points 2.  One can see that [n]/ [q]  increases monotoni- 
cally with [q] (points 1) without reaching the expected saturation. Such 
behavior is typical for rigid chain polymers.[141 In contrast, curve 2 has 
a well-defined maximum. Let us compare the experimental curve 2 
with the one given by the model function PT(Q). 

The relative values of the width of curve 2 on the levels PT= 
0.9PT,max and 0 . 8 P ~ , ~ ~ ~  are equal to AQ/QaY = 0.55 and 0.83, respec- 
tively. According to Table 11, these values are predicted for a chain 
with dlA = 0.020 f 0.002. 

0 

C O  
0 

1 
0 

0 

0 

FIGURE 5 Experimental values of [n]/[q] and [n]/[#/[q]’” (.points 1 and 2, respec- 
tively) versus log[q] as obtained by Lavvenko et al. for rigd chain polybenzimida- 
zolterephthalamide in 96% H2S04. Solid curve 2 represents the spline-approximation. 
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32 P. MOLLER AND V. MOLLER 

The abscissae of the median points of curve 2 at the levels 0.9 and 
0.8 are 1.58 and 1.61, respectively. The average value, viz (log [ v ] ) ~ ~  = 
1.595, might be compared with Qav = 1.925, as given Table I11 for the 
chains with the values of d / A  = 0.02 determined above. Using Equa- 
tions (7) and (1 l)  we obtain Const2 = 0.330 f 0.007. Inserting this 
value and M L  = 19.56 x 10'Ogmol-' m-' into Equations (1 1) and (8), 
one obtains for the length of the random link A = 30 & 2 nm and for 
the chain diameter d = 0.6 f 0.1 nm. 

The height of the maximum of the experimental curve 2 of Figure 5 
is equal to 25.2 x 10". With this value and with d/A=0.02 for the 
model chain value of PT,max = 36.84 can be read from Table I. Inser- 
tion of these values into Equations (4)and (1 1) yield Constl = 1.46. 
Using in Equations (5) and (ll),  this value of Const' together with 
the above quoted value of ML and value['31 of B=7.9 x 1020J-' for 
the stress optical coefficient of Equation (2), one obtains ,B= 19.6 x 
lOl3rn2. The latter value is in good agreement with an optical anisot- 
ropy per unit length of the chain, as found previously by T s ~ e t k o v " ~ ~  
for aromatic polyamidobenzimidazoles of similar structure. 

CONCLUSIONS 

In the past, several authors (e.g., Doudos and Benoit;"'] Dondos and 
Staikos;[16] La~renko"~~ '~ ] )  have tried to replace nonlinear experimen- 
tal interdependences by linear relations between properly chosen new 
(composite) parameters. For example, Tsvetko~['~I has shown that - 
for a certain family of polymers and in a restricted range of molar 
masses - a linear relation exists between the reciprocal values of the 
stress optical coefficient and the molar mass. However, because of the 
mentioned restrictions no physical law can be deduced from those 
linear relations. As a consequence, a direct comparison between the 
unchanged results and their theoretical predictions should be 
f a v ~ r e d [ ~ - ~ ]  in the general case. In the present paper, however, a com- 
promise was made. A nonlinear presentation was admitted for the 
interdependence of properly chosen parameters for a comparison 
between experimental and theoretical relations. The higher power of 
[q] used herein puts obviously higher standards on the adequacy of the 
theories of intrinsic viscosity and FB. 
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Excluded volume effects (which may hardly be noticeable in the 
specific low LIA range discussed above) and polydispersity of the poly- 
mer sample may be the reasons of underestimated A-values and over- 
estimated d-values. The ,&values are affected in different directions: 
excluded volume effects lead to lower values, whereas higher values 
are expected when polydispersity is taken into account. 
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